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Nematic order of model goethite nanorods in a magnetic field
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We explore the nematic order of model goethite nanorods in an external magnetic field within Onsager-
Parsons density functional theory. The goethite rods are represented by monodisperse, charged spherocylinders
with a permanent magnetic moment along the rod main axis, forcing the particles to align parallel to the
magnetic field at low field strength. The intrinsic diamagnetic susceptibility anisometry of the rods is negative,
which leads to a preferred perpendicular orientation at higher field strength. It is shown that these competing
effects may give rise to intricate phase behavior, including a pronounced stability of biaxial nematic order and
the presence of reentrant phase transitions and demixing phenomena.
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I. INTRODUCTION

The effect of external fields on the phase behavior of ani-
sometric colloids (rods and plates) has received considerable
attention over the last years, in particular in the domain of
density functional theory [1]. The presence of an interface or
wall breaks the translational and orientational symmetry and
leads to local structures that are drastically different from
those found in the bulk [2-5]. Macroscopically different be-
havior may be brought about for instance by a gravitational
field [6,7]. If the buoyant mass of the colloids is sufficiently
high, inhomogeneous density profiles are built up along the
vertical dimension of the system. In some cases, this may
lead to the formation of multiple phase equilibria not en-
countered at zero field [8—-10].

In addition, much effort has been put into investigating
the behavior of anisometric colloids in an applied electric or
magnetic field. Owing to the fact that the electric polarizabil-
ity (or magnetic susceptibility) is different along the short
and long axes of the particle, electric or magnetic dipole
moments are induced which give rise to an additional ener-
getic contribution to the free energy. The resulting competi-
tion between minimal self-energy and maximal configura-
tional entropy of the rods drastically changes the
orientational structure of the system and leads to qualita-
tively different phase behavior. An important difference with
the previously mentioned class of fields is that an external
electric or magnetic field is only coupled with the orienta-
tional degrees of freedom of the rods or plates and, therefore,
does not directly lead to spatial inhomogeneities.

A systematic attempt to incorporate the effect of these
directional external fields into the classic Onsager theory
[11] for lyotropic anisometric particles has been reported by
Khokhlov and Semenov [12]. Within a simplified variational
approach, general phase behavior scenarios were presented
for both hard and semiflexible rod systems subjected to vari-
ous types of directional fields. Later on, similar studies have
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been carried out within a numerical treatment of the Onsager
theory [13,14] and Lee-Parsons [15] and modified weighted-
density approximation (MWDA) -type [16] density func-
tional approaches. In the latter case, various (spatially) inho-
mogeneous liquid crystal states which may occur at high
packing fractions, e.g., smectic and (plastic) solids, were also
considered.

Although the experimental study of electromagnetic field
effects on colloidal suspensions has been pioneered a long
time ago (see Ref. [17] and references therein), the topic has
been the subject of renewed interest because of recent ex-
periments on colloidal goethite (a-FeOOH) suspensions
[17,18]. These systems consist of charged, bar-shaped nano-
rods with peculiar magnetic properties. These particles not
only possess a permanent magnetic moment directed along
their longitudinal axis, originating from uncompensated sur-
face spins within the antiferromagnetic crystal lattice, but
also an enhanced magnetic susceptibility along their short
axes. This means that additional magnetic moments are in-
duced perpendicular to the main axis upon applying an ex-
ternal field. These unique properties become manifest in par-
ticular in concentrated, nematic suspensions subjected to
magnetic fields below 1 T. At low field strengths, the in-
duced moments are weak and the permanent ones give rise to
enhanced nematic alignment along the field direction. How-
ever, at high field strengths, the induced moments are domi-
nant and cause the rods to orient with their longitudinal axes
perpendicular to the field. The associated reorientation of the
nematic director can be clearly observed from x-ray scatter-
ing measurements [19].

Although the realignment phenomenon can be understood
directly from the counteracting effects of the permanent and
induced magnetic dipoles, very little is known about the
overall phase diagram of goethite systems as a function of
applied field strength. In Ref. [18], a first attempt has been
made toward a global understanding of the phase behavior,
but the analysis there was restricted to ideal systems, de-
scribed by a simple Boltzmann distribution for the rod ori-
entations, and weakly correlated systems described by an
expansion of the Onsager free energy up to first order in the
degree of nematic order. Both approaches may be used for
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very dilute isotropic suspensions where particle interactions
are not too important, but lack predictive power for dense
systems where interactions lead to strong deviations from the
ideal Boltzmann orientation distribution associated with the
magnetic energy.

In this paper, we give a full numerical analysis of the
phase behavior of model goethite suspensions, starting from
Onsager-Parsons density functional theory. The numerical
approach not only allows us to explore the full nematic den-
sity range, it also provides a reliable way to probe subtle
changes in the nematic orientation symmetry as a function of
the applied field strength, in particular transitions between
uniaxial and biaxial nematic states. We stress that the model
goethite system we consider in this paper is a strongly sim-
plified one. The particles are considered as monodisperse,
charged spherocylinders interacting via electrostatic repul-
sions. Weak attractive van der Waals forces are present in the
experimental systems [20], but are difficult to incorporate
theoretically and are not considered here. The interaction en-
ergy between the total dipole moments on the rods is esti-
mated to be of the order 107k;T [20] and, therefore, can be
safely neglected. Moreover, the particles’ considerable size
polydispersity (along all three particle axes) not only leads to
a wide variety of particle shapes, but also a strong concomi-
tant spread in the magnetic and electrostatic properties (e.g.,
surface charge). Therefore, all quantities presented here per-
taining to the electrostatic and magnetic properties should be
considered as typical values rather than quantitative aver-
ages.

This paper is constructed as follows. In Sec. II, the
Onsager-Parsons approach will be presented and adapted for
charged particles in the presence of a directional field. In
Sec. III, we quantify the average magnetic and electrostatic
properties of the goethite rods. Depending on the relative
contribution of the (average) permanent and induced dipole
moments, several phase diagram scenarios for goethite were
constructed. They will be discussed in Sec. V. Finally, in Sec.
VI, we summarize our findings and provide a brief outlook
for future work.

II. ONSAGER-PARSONS THEORY

The starting point of our analysis is the magnetic energy
of a single goethite rod which consists of two parts: (i) a
contribution for the remanent magnetic moment along the
main rod axis, linear in the magnetic field strength B; and (ii)
one representing the induced magnetization perpendicular to
the main axis, which depends quadratically on B. Following
Ref. [18], the total magnetic energy can be written as

BU,,(cos 6) = — JBP,(cos 6) + KB*P,(cos 6) (1)

in terms of the Legendre polynomials P, with 6 being the
angle between the main rod axis and the direction of the
magnetic field. The quantities J and K, with dimensions
given in T~! and T2 (Tesla), respectively, are related to the
(average) remanent dipole moment u, and the diamagnetic
susceptibility anisometry Ay=x;—x, <O of the nanorods via
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J:Blu’r’ K=B|AX|U0/3,LL() (2)

with v, the rod volume and p, the magnetic permeability in
a vacuum. All quantities will be specified in Sec. IIT A.

As a first approximation, the bar-shaped goethite rods are
modeled as (uniaxial) spherocylinders with equal length L
and diameter D, bearing a uniform electric surface charge.
Following Onsager [11], the charged rods interact via an ef-
fective hard core repulsion, characterized by an effective di-
ameter D> D which depends on the charge density on the
particle and the ionic strength of the solvent. The Onsager-
Parsons free energy of the system in the presence of an ex-
ternal directional field can be cast into the following func-
tional form [11,21]:

I%F ~In ¢ + o f]+ cgp(Pplf1+ hlf1} + (BU,,(cos 0)),
(3)

where the brackets denote an orientational average according
to some singlet orientation distribution function (ODF) f({)
characterizing the average orientational configuration of the
system in terms of the solid angle (). Here, ¢ and ¢ denote
the effective  (dimensionless) number density ¢
=(m/4)NL?D/V and packing fraction ¢=Nv/V with
Vege=(/4) LD+ (/6)D2; being the effective volume of
the spherocylinder. The last term in Eq. (3) represents the
external magnetic contribution [cf. Eq. (1)], whereas o and p
quantify the orientational and packing entropy, respectively,
defined by the following angular averages:

olf]=(In 47f(Q)),

4] ' Doy 27 Degr |

plf]= W{«Sm AL+ T+ = ( 5 ) } @)
where 7y is the angle between two spherocylinders with ori-
entations ) and €)’. The second term in p[f] arises from
end-cap contributions to the (electrostatic) repulsion between
two short spherocylinders and is strictly speaking only valid
in the isotropic state [22]. The O((D/L)?) contribution has
been included to retain the excluded volume of a hard
spherocylinder in the limit D ;— D. The contribution 7 ex-
presses the so-called “twisting effect” arising from the
orientation-dependent nature of the electrostatic interaction
[11,23]

Af]= ;ir«_ sin ¥(Q,Q")In[sin ¥(Q,Q)]);

—(In2-1/2)p[f]. (5)

The importance of this effect is quantified by a twisting pa-
rameter 1= k~'/ D, defined as the ratio of the Debye screen-
ing length «~! and the effective rod diameter [21]. All prop-
erties pertaining to the electrostatic interactions will be
specified in Sec. III B for the case of goethite. The function
gp() originates from the Lee-Parsons [24-26] rescaling of
the original second virial theory. In its simplest form, gp(¢)
is proportional to the Carnahan-Starling excess free energy
F¢s (in units kgT per particle) for a hard sphere fluid [27]
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in terms of the effective rod volume fraction ¢. As in Eq. (4),
we implicitly assume here that a charged spherocylinder can
be represented by a hard spherocylinder with an effective
diameter D ;.
The equilibrium ODF is determined by applying a formal
minimization of the free energy. This yields the following
self-consistency condition:

(6)

8
flQ)= ZeXp{— —cgp(d) J w(Q,Q')f(Q’)dQ’]

X exp[— BU,(cos 0)], (7)

where Z is obtained from the normalization condition
[f(Q)dQ=1. w is the orientation-dependent part of the sec-
ond virial coefficient for two charged spherocylinders at
fixed solid angles () and ' [21]

o(Q,Q') =sin y(Q,Q") X (1 = A{In[sin ¥(Q,Q")]
+In2-1/2}). (8)

The solid angle () is conveniently parametrized in terms of a
polar angle 0=< @< 7 and an azimuthal one 0< <2, so
that dQ)=sin 6d 8d¢. Throughout the remainder of this text, 6
always refers to the angle between the rod main axis and the
direction of the magnetic field. The azimuthal angle ¢, then
describes the projection of the rod axis onto the plane per-
pendicular to the field. Equation (7) is solved iteratively ac-
cording to a discretization scheme outlined in Ref. [28] using
a grid of angles {6;,¢;}; ;=1 y of mesh size N=30 for the
biaxial state and {6;},; y(N=100) for the uniaxial state. Re-
fining these grid sizes did not lead to significant changes in
the results.

Once the ODF has been obtained, the thermodynamics
and phase behavior of the system can be inferred from the
osmotic pressure and chemical potential. These are conve-
niently expressed in terms of the parameters o, p, and 7 [cf.
Egs. (4) and (5)] via

2¢P

Bll=c+c {p[f] hlf1},
Bi=lnc+olf]+ zc(gp v 5%)@&]
+ hoffT}+ (BU,(cos B);. 9)

with ﬂﬁ and B denoting the dimensionless pressure and
chemical potential, respectively. At phase coexistence, these
quantities must be equal in each of the coexisting phases.
Second-order phase transitions from, e.g., uniaxial to biaxial
nematic symmetries can be localized by means of a first-
order bifurcation analysis, as discussed in detail in Ref. [29].

Nematic order parameters

To specify the orientational symmetry in the various nem-
atic states, we calculate several nematic order parameters.
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The degree of dipolar order due to the permanent dipoles at
finite field strengths is given by the following average

S1=<7)1 COS(0)>f. (10)

Note that for nondipolar rods §;=0 and f({)) is invariant
with respect to the inversion #— (7r—6). In principle, the
(quadrupolar) orientational order around the field direction
could be expressed in terms of higher order (associated) Leg-
endre polynomials depending on # and ¢. However, the av-
erage direction of the rods may be different from the field
direction, in particular at higher field strengths where the
rods tend to be perpendicular to the field, so that the nematic
director is not always known a priori. Therefore, it is advan-
tageous to analyze the orientational order from the symmet-
ric, second-rank tensor Q, defined as [30]

3. . 1
Q=E<u®u>f_ EI, (11)

where w={sin 0 cos ¢,sin #sin ¢,cos 6} is the orientation
unit vector of the rod, ® denotes the dyadic product, and I is
the second-rank unit tensor. The nematic order parameter S,
is defined as the largest eigenvalue of Q and the nematic
director is the corresponding eigenvector. The sign of S, al-
lows one to distinguish two types of nematic order. First, if
0<S,=1, the particles are preferentially aligned along the
principal director, corresponding to common polar (or pro-
late) nematic order. Alternatively, if —1/2<S5,<0, the par-
ticles are mainly oriented in a plane perpendicular to the
director, leading to planar (i.e., oblate or antinematic) order.
Note that the latter type of nematic order only occurs in
systems subjected to disorientational external fields and is
not stable at zero-field conditions [12].

To discriminate between uniaxial and biaxial nematic
states, we focus on the two smallest eigenvalues of Q. If they
are degenerate, all directions perpendicular to the director are
equally probable and the system is of uniaxial symmetry. In
the biaxial nematic state, the difference A between these ei-
genvalues provides a measure for the degree of preferred
order along a secondary director perpendicular to the main
one.

III. INTRINSIC ROD PROPERTIES

A. Magnetic properties

The electronic and magnetic properties of the goethite
rods have been extensively discussed in Ref. [18]. Here, we
shall only briefly recall some of the basic quantities we need
as input for our calculations. First of all, the remanent mag-
netic dipole moment of the rods pu, is estimated to be 103 ug
(up is the Bohr magneton). The diamagnetic susceptibility
Ay at room temperature is —1.7 X 10~ and the average par-
ticle volume v=>5.6 X 1072 m3. Using these numbers in Eq.
(2), we obtain J=2.28 T~! and K=0.72 T2 These values
need to be considered with some care because the magnetic
properties are size dependent and the inherent size polydis-
persity of the system, therefore, leads to a considerable
spread in J and K.

To check whether these numbers are representative for the
experimental goethite system, we may trace S, as a function
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of B for a dilute (i.e., isotropic at zero field) system and
locate its zero point. Beyond this point, the nematic order
parameter is negative, which signifies a gradual change to-
ward the planar-type nematic order found at high field
strengths. Experimentally, the zero point is located at 0.35 T,
whereas theoretically we find 1.809 T, irrespective of the
density (at least in the paranematic density range, as will
become clear later). The large discrepancy is attributed to the
incertainty in K, which depends sensitively on the particle
size. We can achieve much closer agreement by doubling
this value such that /=228 T~! and K=1.44 T-2. This gives
a zero point at 0.552 T, in reasonable agreement with
the experimental value. In the actual calculations, we shall
fix J at 2.28 T~! and vary K to verify the sensitivity of the
phase behavior with respect to a change of the (dia)magnetic
properties.

B. Electrostatic properties

The double-layer potential around a charged colloid (with
constant surface charge density) can be determined from the
Poisson-Boltzmann (PB) equation which, in our case, must
be solved for a cylindrical geometry. At large distances, the
electrostatic potential ¢ around a cylinder with diameter D
takes the Debye-Hiickel (DH) form [21]

Bipe =TKy(kDI2), (12)

where e is the elementary charge and K, a modified Bessel
function. The proportionality constant I depends upon the
surface charge density o of the particles. For highly charged
particles like goethite, the linearized (DH) equation cannot
be used to obtain I'. Instead, the full (nonlinear) PB equation
must be solved to determine its value. Approximate but ac-
curate analytical solutions of the PB equation for a cylindri-
cal geometry were obtained by Philip and Wooding [31],
which allow for a straightforward calculation of I" by means
of a simple iterative procedure. Once I' has been obtained,
the effective rod diameter can easily be calculated from

D 2 - kD
?ﬁf: 1+ (DK)_I{IH{%} + Vg~ (1/2)}’

(13)

where g is Euler’s constant and Q the Bjerrum length. Us-
ing 0,~0.2C/m? D=15nm, and ionic strength I~4
X102 M, we find k'=1.5nm and '=1.0X 10> for the
goethite rods. Equation (13) then gives us D/ D= 1.65. For
the twisting parameter, we thus find 4= 0.063. These results
indicate that the effect of twist is expected to be rather insig-
nificant. The diameter ratio however is quite high so that the
effective aspect ratio L/D.g of the spherocylinder is much
smaller than that of the bare particle. Throughout this study,
we use L/D=10, which is a reasonable estimate of the aver-
age aspect ratio of the goethite rods [18], so that L/D
=6.3 and g/ Pyc=2.83, with ¢y being the hard-core vol-
ume fraction.
The isotropic-nematic transition densities at zero field are
g)C:0.125 and ¢(};\2:O-132~ Comparing these with the ex-
perimental phase boundaries, gbg)(::0.0SS and ¢%=0.085
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FIG. 1. Generalized para-nematic-nematic phase diagram for
rods in external directional fields; ® >0 in the case of an orienta-
tional field, ® <0 for a disorientational field. Para-nematic-nematic
binodals are given by solid lines, the dotted one represents a
second-order phase transition from the para-uniaxial to the biaxial
nematic state.

[18], shows a large overestimation which indicates that our
simple model cannot provide quantitative results for goe-
thite. The large density gap found in experiment is mainly
due to the particles’ considerable size polydispersity and
seems to be a generic phenomenon in polydisperse systems
[32].

IV. RODS IN DIRECTIONAL EXTERNAL FIELDS:
GENERAL SCENARIOS

Before discussing the complex phase behavior of the
model goethite systems, we shall first present two simple
general scenarios which occur if rodlike particles are sub-
jected to an external directional electromagnetic field. The
general phase diagram for this case has been presented in
Fig. 1. This diagram is qualitatively similar to the one con-
structed by Khokhlov and Semenov in Ref. [12] and has
been recalculated here for infinitely thin hard rods (L/D
— o, h=0) based on the free energy Eq. (3). For conve-
nience, the external energy Eq. (1) has been replaced by

BU.(cos 0) =— DP,(cos 6) (14)

in terms of a general field parameter ® with 6 the angle
between the rod main axis and the field direction. If ® >0,
the rods prefer to align along the field, and common “polar”
nematic order occurs [indicated by “(+)”]. In this case,
the field is referred to as having an “orientational” effect
on the rods [12]. Note that due to the Boltzmann factor,
exp[—BU,,], in Eq. (7), the isotropic state no longer exists at
finite field strengths. Instead, dilute systems now show
weakly aligned para-nematic order, indicated by “P.” Both
nematic phases are of uniaxial symmetry and the first-order
para-nematic-nematic coexistence region terminates in a
critical point above which the system changes from one state
to the other in a continuous fashion. As to magnetic fields,
the present scenario may be observed for, e.g., rods with a
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positive magnetic susceptibility, Ay>0, leading to an in-
duced moment along the main rod axis. The magnetic field
then gives rise to liquid crystalline order of the orientational-
quadrupolar type [12]. Obviously, similar behavior is ex-
pected for rods with a permanent magnetic dipole moment
along their main axis, like goethite (orientational dipolar
field). In this case one refers to orientational-dipolar-type
order.

In the opposite case (P <0) the field has a “disorienta-
tional” effect and the rods preferentially orient in a plane
perpendicular to the field. Both para-nematic and nematic
phases are now of the planar, or antinematic type, indicated
by “(—).” Moreover, in the concentrated nematic phase, the
rods apparently pack more favorably if they attain an addi-
tional direction of alignment within the plane. The nematic
phase, thus, has a biaxial symmetry. For ® <0, the first-order
para-nematic-nematic transition terminates in a tricritical
point [14]. Beyond this point, the transition from one state to
the other occurs by means of a second-order phase transition.
The present type of ordering may occur if the rods have a
negative diamagnetic susceptibility anisometry so that the
induced magnetic moments are perpendicular to their main
axes (disorientational quadrupolar order). This is the case for
the induced moments of the goethite rods. Similar behavior
has been found recently for systems of colloidal gibbsite
platelets in a magnetic field, where magnetic moments are
induced along the short axis of the particle [33].

It is clear from the above that the goethite systems are
expected to display characteristics from both scenarios.
This will become clear in the next section where we shall
discuss some explicit phase diagrams for our model goethite
systems.

V. PHASE DIAGRAMS FOR GOETHITE
A. Quadrupolar scenario

Figure 2(a) shows a phase diagram for “goethite” sphero-
cylinders. This scenario is similar to the experimental situa-
tion, judging from the location of the dashed line which
marks the gradual change from polar-type to planar-type
nematic order in the dilute regime, discussed in Sec. IIT A.
We refer to this diagram as the “quadrupolar scenario” since
the high-field region of the diagram is largely determined by
the induced magnetic moments. Hence, the appearance is
similar to the disorientational quadrupolar scenario depicted
in Fig. 1.

At low field strengths, the remanent moments dominate
and the diagram is governed by the orientational effect of the
field, i.e., the para-nematic and nematic states are both
uniaxial and the rods are strongly aligned along the field
direction. However, upon increasing the field strength, the
degree of polar order will decrease since the induced mo-
ments (perpendicular to the main rod axis) become more
pronounced. At some point, the uniaxial nematic state
changes to a biaxial one and a first-order (para-)uniaxial-
biaxial (PU-BX) nematic coexistence develops. The coexist-
ence region eventually narrows down toward a tricritical
point, beyond which the PU™)-BX transition becomes second
order [12]. At very high field strengths, the induced moments

PHYSICAL REVIEW E 72, 031708 (2005)

1.25 4 |
1.00 4
B(T) 0.75 4
0.50+4

0.25 4

0.00 r . . . } .
0.300 0.325 0.350 0.375 0.400

(a) b

0.000 0.001 0.002 0.003
1.00 v L L L

0.75 - . -

B(T) 0.50 ) ‘ '\.\ -

0.254 s -

0.00 == T

1.00

0.75+

B(T) o050+

0.25

0.00 . }
(c) 0.0 0.5 1.0

FIG. 2. (a) Phase diagram of goethite spherocylinders with J
=228 T~!, K=1.44 T2, and L/D=6.3(L/D=10). Binodals are
indicated by solid lines. The dashed line in the para-nematic region
corresponds to S,=0. The dotted curves denote second-order phase
transitions from the uniaxial (P)U to the biaxial BX nematic state.
The corresponding behavior of the nematic order parameters, S;
(dash-dotted line), S, (solid line), and A (dotted line) is shown in
(b) for ¢»=0.40. The values for A are indicated on the upper hori-
zontal axis. (c) Nematic director in terms of its projection on the x
axis (dotted line), y axis (dash-dotted line), and z axis (solid line) of
the laboratory frame. The magnetic field is parallel to the z axis.
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will completely outweigh the remanent ones and force the
rods to orient almost perfectly in a plane perpendicular to the
field. The planar PU-BX bifurcation then becomes reminis-
cent of a quasi-two-dimensional isotropic-nematic transition
[14].

Let us now focus on the field-induced transitions corre-
sponding to the homogeneous (monophasic) systems, given
by the horizontal curves in Fig. 2(a). In the dilute regime, the
ODF changes continuously from polar-type (peaked around
0=0) to planar-type (peaked around #=7r/2) and the transi-
tion can be roughly localized from the condition S,=0
(dashed curve). Note that the corresponding curve does
not represent a phase transition, it merely localizes a gradual
change of signature of the ODF. The curve is virtually
independent of the packing fraction since the ODF in the
dilute regime is mainly determined by the Boltzmann factor
in Eq. (7).

In the concentrated regime, there is a continuous transi-
tion from the uniaxial to the biaxial nematic state. As is clear
from Fig. 2(c), the transition to the biaxial nematic state
coincides with the field strength where the nematic director
starts to turn away from the field direction. Obviously, if the
nematic director is not parallel to the field, the azimuthal rod
projections (perpendicular to the director) are no longer
equally favorable and the uniaxial symmetry of the nematic
state is lost. At larger field strengths, the degree of biaxiality
increases as the nematic director gradually rotates perpen-
dicular to the field. The reorientation of the nematic director
has also been observed in experiment, albeit at a somewhat
lower applied field, B~0.2 T [19]. We remark that the biax-
ial nematic order parameter A remains very small in the ex-
perimentally accessible field range. Experimental studies of
electric field effects in thermotropic nematic systems have
revealed similar weak biaxiality occuring even at high field
strengths [34,35].

It is clear from Fig. 2(b) that the rods remain sufficiently
ordered along their main directors throughout the entire field
range. By gradually rotating its main nematic director per-
pendicular to the field, the system is able to sustain the level
of polar nematic order without changing to planar nematic
order such as in the dilute regime. This particular property
allows us to perform a simple analysis of the free energy,
valid for strongly aligned, near-parallel orientational con-
figurations. In the Appendix, we show that the realignment
behavior can then be described in terms of a simple spin
concept, in which the rods behave as ideal spins pointing
either parallel or antiparallel to the field.

B. Dipolar scenario

If we reduce the diamagnetic susceptibility anisometry
(by lowering K) the diamagnetic effect becomes relatively
unimportant at low fields. The influence of the remanent di-
pole moments is then expected to govern the phase behavior
in this regime. We see from Fig. 3 that the topology is indeed
very similar to the orientational scenario of Fig. 1. The para-
nematic-nematic coexistence region terminates in a critical
point above which the system changes gradually from one
state to the other without any discontinuity or jump in the
associated nematic order parameters.
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FIG. 3. Phase diagram for J=2.28 T~! and K=0.72 T2, All
dotted curves denote second-order phase transitions from the
uniaxial to the biaxial nematic state.

At high field strength, the induced moments become
dominant and give rise to a reopening of the phase gap be-
yond some critical B value. Note that the nematic phase is
now of biaxial symmetry, like in Fig. 2(a). A remarkable
difference with the previous scenario, however, is that the
para-nematic phase becomes biaxial as well at B>2.38 T. In
this regime, a coexistence between two biaxial phases [a
para-biaxial nematic (PBX) and a biaxial nematic (BX) one]
develops which eventually closes off at a critical or conso-
lute point located at B=2.848 T. Beyond this point, the sys-
tem gradually changes from one state to the other, similar to
the para-nematic-nematic transition above the PU™-U®
critical point. In fact, the para-biaxial-biaxial demixing re-
gion can be considered as the high-field analog of the
PUW-U™ transition. Both involve a coexistence between
phases of equal symmetry and the entropic mechanism un-
derpinning the demixing is governed by a competition be-
tween orientational entropy (favoring the weakly ordered
para-nematic state) and packing entropy (favoring the nem-
atic state).

An obvious consequence of reducing K is that the transi-
tions pertaining to the homogeneous systems shift to much
higher B values, as we see in Fig. 3. In the concentrated
regime, the transition from the uniaxial to the biaxial state is
continuous and corresponds to the point where the rods start
to collectively turn away from the field direction, similar to
the situation indicated in Fig. 2(b) and 2(c).

C. Intermediate scenario

If we choose an intermediate value for K we get an even
richer phase diagram as can be seen from Fig. 4. Close in-
spection reveals that the diagram contains features of both
previous scenarios. This is particularly notable at high field
strengths, where we observe two para-nematic-nematic re-
gions (involving a PU-BX and a PBX-BX coexistence) remi-
niscent of the upper regions of Fig. 2(a) and Fig. 3, respec-
tively. Upon lowering B, the two regions meet at a triple line,
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FIG. 4. Phase diagram for J=2.28 T~! and K=1.08 T~2. All
dotted curves denote second-order phase transitions from the
uniaxial to the biaxial nematic state. A triple line is located at B
=141T.

indicating a triphasic coexistence between a uniaxial nematic
phase and two biaxial nematic phases each with a different
concentration. Marked reentrant and remixing effects are no-
table around ¢=0.36 where a sequence of phase coexist-
ences may be expected upon increasing field strengths.

The present scenario can be nicely connected to the pre-
vious ones by focussing on the triple equilibrium. If we in-
crease K, the concentration of the para-biaxial phase (middle
dot) is expected to move closer to that of the coexisting
biaxial phase (right dot) so that the biaxial-biaxial region is
pushed out of the diagram. At some K value, both concen-
trations meet at a critical end point where the PBX-BX
region has completely disappeared. From this point on the
scenario will be similar to Fig. 2(a). If we decrease K, the
opposite happens: the uniaxial-biaxial region is squeezed out
at the benefit of the biaxial-biaxial region (Fig. 3). Simulta-
neously, the lower PU™-U™ binodals detach from the upper
PUY)-BX ones. The latter now constitute a separate coexist-
ence region, enclosed by a lower tricritical point and an up-
per consolute point.

VI. CONCLUSIONS

Within the Onsager-Parsons theory, we have investigated
the stability of the various nematic states which may appear
in systems of goethite rods when subjected to an external
magnetic field. In the present study, the goethite rods are
represented by charged spherocylinders bearing a remanent
magnetic moment (leading to preferred dipolar order) and a
negative diamagnetic susceptibility anisometry (leading to
preferred planar, or quadrupolar, order). These mixed
dipolar/quadrupolar properties give rise to intricate liquid
crystalline phase behavior. Depending on the relative contri-
butions of the particles’ remanent dipole moment and the
negative magnetic susceptibility anisometry, several sce-
narios were constructed. The quadrupolar scenario, in which
the effect of the remanent moments is relatively small, is
characterized by a gradual reorientation of the nematic direc-
tor at some critical field strength. The collective rotation of
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the rods away from the magnetic field direction has been
observed in x-ray scattering studies of concentrated goethite
samples. We have shown that the realignment phenomenon
can be described qualitatively by a simple spin concept,
which allows us to approximately locate the onset of the
director realignment in terms of a second-order phase transi-
tion.

Similar reorientation phenomena occur upon lowering the
susceptibility anisometry, but the phase diagrams become
drastically different in these cases. In the dipolar scenario,
where diamagnetic effects only become manifest at high field
strengths, two separate para-nematic-nematic coexistence re-
gions are found at low and high fields, the latter involving
two biaxial nematic phases. At intermediate susceptibilities,
a triphasic coexistence is found between a uniaxial para-
nematic phase and two biaxial nematic ones.

In the present calculations, we have not accounted for the
bar-shaped geometry of the goethite particles. The inherent
biaxial shape may have serious consequences for the phase
diagrams presented here, in particular with respect to transi-
tions to the biaxial nematic state. We anticipate that biaxial
order will be significantly stabilized because the bar shape
makes them prone to biaxial nematic order, even at zero
field. Further complications, such as size polydispersity
could also be addressed by considering, e.g., binary mixtures
of two different-sized spherocylinders. Note that the size de-
pendency of the magnetic properties should then also be
taken into account. However, given the complex phase be-
havior of the monodisperse systems considered here, one
may question whether it is worthwhile to pursue this direc-
tion.

From an experimental point of view, a promising way to
reconciliate the present model system with the experimental
one could be to reduce both the intrinsic bar shape and the
size spread of the colloids. The first could be achieved by
coating the particles with a layer of silica which would ren-
der them more cylinder-like. The coating procedure also
opens up the possibility of introducing hard-particle interac-
tions by applying a polymer grafting of the silica-coated par-
ticles and redispersing them into a suitable apolar solvent.
However, we do not expect this modification to give signifi-
cantly different phase behavior since the electrostatic twist
effect is of marginal importance and all phase diagrams pre-
sented here qualitatively apply to “hard” goethite rods as
well. The second goal, reduction of the polydispersity, can be
reached using various purification and fractionation methods.
In particular, reducing the particles’ considerable length
polydispersity would be desirable to enhance the stability of
smectic order. Finally, a systematic variation of particle size
is expected to influence the relative importance of permanent
and induced magnetic moments, which would offer a means
to address different theoretical scenarios. These experimental
topics are currently under investigation at the Van ’t Hoff
laboratory and significant progress has already been made.

ACKNOWLEDGMENT

We want to thank Patrick Davidson for stimulating our
interest in this problem.

031708-7



H. H. WENSINK AND G. J. VROEGE

APPENDIX: SPIN MODEL

If the spherocylinders are perfectly aligned, the uniaxial
state (U) is represented by a collection of rods all (anti)par-
allel to the field direction. In the “tilted” biaxial phase (BX),
the rod dipoles make an angle 8 or 77— 8 (0< B8< 7/2) with
the field direction. At fixed concentration, the excluded-
volume entropy p (for y=0) is identical in both states and
the interactions, therefore, do not contribute to the free en-
ergy difference. Conceptually, the system can be considered
as a system of ideal spins. In the U state, the magnetic en-
ergy of a single spin is then equal to —JB+KB? (up, parallel
to the field) or JB+KB? (down, antiparallel), according to
Eq. (1). Similarly, in the BX state, we substitute 6= (up)
and #=7-B (down) in Eq. (1) for all particles. The free
energy difference AF(B)=Fpx—Fy is now easily calculated
from the spin partition function and reads

3
+ =KB?(cos®> B—1).

cosh JB
2

AFp) = ln[ cosh(JB cos B)

(A1)

Taking the derivative of the free energy with respect to 8
reveals that the uniaxial nematic state (i.e., 8=0) is a trivial
solution of the stationarity condition JAF/JB=0 at all field
strengths. At high fields, this equation will have nonzero so-
lutions B+ 0 indicating a possible transition to the “tilted”
biaxial state. The branching point is found by performing a
simple Landau expansion of Eq. (A1) in terms of the “order
parameter” B. Expanding up to the fourth order in 8 gives
AF(B)=Cif% + Cr + O(B°) (A2)

with
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1
C, = E(JB tanh JB — 3KB?),

1
C,= ﬂ{lzm2 - 3(JB)* cosh™ JB - JB tanh JB}.

(A3)

Note that Eq. (A2) does not have a cubic contribution
(B’ since B and —B are thermodynamically equivalent.
Furthermore, C, is generally positive indicating that we are
dealing with a (continuous) phase transition of the second
kind [36]. The tilting transition, in terms of the critical field
strength B, can be determined from C;=0. For the system in
Fig. 2 this gives B.=0.350 T; for the one corresponding to
Fig. 3, we get B,=1.037 T; and for Fig. 4, B,.=0.627 T. The
agreement with numerical results is reasonable, in particular
at high packing fractions. In all three cases, the spin model
seems to underestimate the uniaxial-biaxial nematic transi-
tion by about 15% (at ¢=0.4) compared to the numerical
results. Larger discrepancies occur at lower concentrations
mainly due to the neglect of subtle changes in the orienta-
tional and packing entropy at the tilting transition.

An analytical estimate of the critical field strength can be
obtained if JB, is much larger than unity. In that case, the
hyperbolic functions in Eq. (A3) are either close to zero or
unity. From C;=0, we then obtain the simple result B,
~J/3K (with J>K). Elaborating Eq. (A2) a little further

reveals that
1 (B.-B)”2
9k?\ B

close to the critical point, showing that the tilt angle obeys
common mean-field scaling behavior [36].

1Bl ~ (A4)
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